Radiation Effects on Concrete Structures: Structural Performance and Material Degradation
Bruce Blower, David Ma, Omesh Chopra
Environmental Science Division
Argonne National Laboratory

Yunping Xi
Department of Civil, Environmental, and Architectural Engineering
University of Colorado at Boulder

NRC Project Manager: Madhumita Sircar
NRC Regulatory Information Conference – March 15, 2018

Overview

- Concrete irradiation impacts relative to Subsequent License Renewal
- Concrete degradation in a radiation field (experimental results)
 - Concrete composition
 - Neutron interaction and impacts
 - Gamma interaction and impacts
- 80-year end-of-life radiation levels
 - Neutron / gamma
 - BWRs / PWRs
- Concrete Bioshield and Reactor Support
 - BWRs / PWRs
- Summary / Path Forward

Potential Radiation Impacts

- Concrete structures in vicinity of reactor pressure vessel (RPV) experience highest radiation fields
 - Neutron and gamma in conjunction with related heating effects
 - RPV support and shielding
- Subsequent license renewal (SLR) from 60 to 80 years raises questions
 - Potential cumulative concrete radiation exposure exceeds damage levels
 - Concrete plays significant role
 - SLR concrete degradation due to irradiation effects need investigation
Irradiation Impact Evaluation

- Reviewed existing literature
 - Extracted data relevant to LWR operation
- Need to understand separate and combined effects
 - Concrete composition
 - Cement paste vs aggregate vs concrete
 - Water-to-cement ratio
 - Aggregate type and fraction in concrete
 - Bond strength between steel and concrete (metal reinforcement and metal support embedment/anchorage)
 - Stressors
 - Neutron
 - Gamma
 - Temperature
 - Carbonization
 - ASR

Concrete Composition

- Aggregates in a cement paste matrix
 - The two phases have different hygroscopic, thermal, and mechanical properties
 - Bioshield formulations followed industry standard recommendations at the time of construction
- Aggregates
 - Two common categories
 - Siliceous (e.g., quartzite, granite, and flint; crystalline structure)
 - Calcareous (e.g., limestone and dolomite; amorphous structure)
 - Expected that local quarries were used at time of construction
 - Too expensive to truck in aggregates with better shielding properties (e.g., barite)

Concrete Composition (cont.)

- Cement Paste
 - Formed by hydration reaction of Portland cement with water
 - Primarily calcium silicate hydrate (amorphous) with some calcium hydroxide and ettringite (both crystalline)
 - Three types of water in cement paste
 - Capillary (free) – water in capillary pores, evaporable under air dry, drying shrinkage results from loss
 - Interlayer – between solid layers of calcium silicate hydrate – immobile under air dry but mobile under vacuum or low relative humidity, loss results in excessive shrinkage
 - Chemically combined – loss under high temperature (dehydration) results in major strength reduction
Neutron Induced Concrete Dimensional Change

- Concrete dimension / volume changes as a function of neutron fluence
 - Provides fundamental explanation for many changes in concrete properties
 - Temperature control (unirradiated) samples had changes < 0.15%

- Aggregate expansion
 - Disruption of crystalline structure
 - Siliceous aggregates show most change

- Cement paste shrinkage
 - From minor water loss

- Onset at about a fluence of $1 \times 10^{20} \text{ cm}^2$

Gamma Radiation Levels and Impacts

- Gamma dose could potentially exceed $1 \times 10^{10} \text{ rad}$ at the face of the bioshield wall after 80 years of PWR operation

- Contributes heating effect
 - Estimated maximum 20°F temperature increase over ambient (outside the bioshield) due to gamma radiation about 0.75 ft into the bioshield
 - Estimated highest temperature in the bioshield would be about 158°F given a reactor cavity temperature of 150°F
 - Some variation in reactor cavity temperature both within the cavity and among NPPs

- Radiolysis of water
 - Responsible for cement paste water loss and subsequent shrinkage
 - Results in cement paste micro-cracking and bond mismatch with aggregate

Preliminary 80-Year End-of-Life Neutron Fluence ($E > 0.1 \text{ MeV}$)

- Starting point is 60-year end-of-life fluence at the clad-base metal interface (0T position) for neutrons ($E > 1.0 \text{ MeV}$)
 - Primarily taken from license renewal applications (license extension to 60 yrs)
 - Based on capsule surveillance reports

- Estimate attenuation of fluence through the reactor wall (change from 0T to 1T position)
 - Uses methodology from Regulatory Guide 1.99 (Radiation Embrittlement of Reactor Vessel Materials)

- Linear scaling to 80-year fluence levels
 - First approximation, ignores past /future operating parameters

- Convert $E > 1.0 \text{ MeV}$ fluence estimates to $E > 0.1 \text{ MeV}$ fluence
 - Use of empirical curve fit (ratio of 0.1 MeV to 1.0 MeV as function of RPV thickness)
BWR Concrete Support Structure Summary

- Expected 80-year neutron fluence level ($E > 0.1$ MeV) for maximum case at the core belt line is 1×10^{19} n/cm2
- Nearest concrete support structures are the anchorage points for the lateral stabilizer brackets and the foundation for the RPV support skirt
- Large distances from the reactor core and significant amounts of shielding material in the intervening spaces serve to attenuate the radiation
- Plant-specific review still necessary due to design variations

PWR Concrete Support Structure Summary

- Neutron fluence levels ($E > 0.1$ MeV) after 80-years of operation are estimated to exceed 1×10^{19} n/cm2 at the RPV outside face for all PWRs
 - Estimates are for the core belt line region
 - Highest estimated fluence level is over 6×10^{19} n/cm2
 - Uncertainties are related to:
 - Attenuation of radiation passing through the reactor vessel shell
 - Conversion of $E > 1.0$ MeV to $E > 0.1$ MeV fluence
 - Extrapolation to 80-years of operation
 - Variabilities include:
 - Reactor-specific capacity factors
 - Changes to loading patterns and fuel configurations
 - Plant modifications (e.g. fuel spacers)
 - Reactor-specific cavity dosimetry

- Need neutron fluence estimates for the region beyond the active core
 - Area where supporting bioshield could exceed 1×10^{19} n/cm2 in some cases
 - Recent studies by ORNL suggest higher than expected fluence due to scattering and streaming

- Long-term elevated operating temperatures could contribute to concrete degradation in conjunction with neutron and gamma radiation

80-Year Neutron Fluence at PWR Supports

- Concrete supports near active core region most at risk (only inches from RPV)
- Lesser risk to reactors supported on a neutron shield tank
- Metal support columns resting on the concrete basemat in most cases are tied to the concrete bioshield and need investigation
- Streaming effects could increase neutron fluence in reactor cavity
- Effects of cavity liner or formwork to be investigated
End Game - Structural Performance

- Need to translate radiation damage at the nano-scale to the (structural) macro-scale
- Review of nano-/micro-mechanical models to provide basis for coupling to standard engineering analyses under design basis conditions
 - Four relevant degradation models proposed within the last 3 years

Path Forward

- Analyze select NPPs for performance against design basis criteria using degraded concrete properties and microstructural changes
 - Currently performing limited review to evaluate the susceptibility of individual reactor support designs
 - Account for embedded metal (e.g., rebar, support anchorage)
 - Select NPP(s) with available data (LOCA and seismic design data for supports)
- Complete analyses of neutron and gamma radiation data on concrete
 - Neutron and gamma data analyzed
 - Currently trying to understand combined effects (i.e., determine contributions from various stressors [e.g., neutron, gamma, thermal] to overall degradation mechanism)
- Verify predictive numerical models
 - Expansion of aggregate at different neutron fluences (nano-scale)
 - Degradation of aggregate & cement paste under high-T (nano- and micro-scale)
 - Interactions of aggregate and cement paste components (micro-scale)
 - Prediction of neutron distribution in concrete structures (multi-scale)
 - Metal – concrete bond strength