Irradiation Effects on Concrete Strength

Masayoshi KOJIMA

Regulatory Standard and Research Department,
Secretariat of Nuclear Regulation Authority (S/NRA/R), Tokyo, Japan

NRA: Nuclear Regulation Authority, Japan
* NOTE: The content of this report does not represent official NRA positions.

Contents

1. Background
2. Objectives
3. Key Points
4. Tests on Coarse Aggregate
5. Tests on Concrete
6. Discussion
7. Conclusion

1. Background
2. Objectives

➢ To investigate the effects on strength reduction of concrete by neutron irradiation.

➢ To investigate the technical basis based on the scientific method when there are the effects on strength reduction.
3. Key Points

- α-quartz in aggregate expands 16 to 18% in volume by neutron irradiation.
- The crystal structure inside α-quartz changes due to metamictization in a process of expansion of aggregate by neutron irradiation.

Focusing on percentage of α-quartz content in coarse aggregate

Focusing on percentage of α-quartz content in coarse aggregate

Metamictization*: A state in which a crystal lattice is destroyed by radiation and is regarded as amorphous like glass for both X-rays and visible light.

4. Tests on Coarse Aggregate
Specification on Coarse Aggregate Specimens

- Specimen Size: $\Phi 10\text{mm} \times 10\text{mm}$
- Neutron Fluence ($E>0.1\text{Mev}$): 4 Levels
 - 0.701, 1.28, 4.12, 8.25 ($\times 10^{19} \text{n/cm}^2$)
- Quartz Content: 5 Levels

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Quartz Content (mass %)</th>
<th>SiO_2 Content (%)</th>
<th>Grain Size (mm)</th>
<th>Rock Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA</td>
<td>91.9</td>
<td>87.0</td>
<td>0.1 - 0.3</td>
<td>Tuff (Crushed Stone)</td>
</tr>
<tr>
<td>GB</td>
<td>47.1</td>
<td>74.7</td>
<td>1.0 - 3.0</td>
<td>Sandstone (Crushed)</td>
</tr>
<tr>
<td>GC</td>
<td>39.7</td>
<td>70.8</td>
<td>2.0 - 5.0</td>
<td>Sandstone (Crushed)</td>
</tr>
<tr>
<td>GD</td>
<td>40.1</td>
<td>74.1</td>
<td>1.0 - 3.0</td>
<td>Sandstone (Crushed)</td>
</tr>
<tr>
<td>GE</td>
<td>23.5</td>
<td>52.6</td>
<td>0.5 - 1.5</td>
<td>Sandstone (Crushed)</td>
</tr>
</tbody>
</table>

The expansion on height was proportional to the square of the neutron fluence.

The quartz content of 23.5 to 47.1% showed no significant difference in height expansion.

Relationship Between Neutron Fluence and Expansion

- The larger the α-quartz content, the greater the expansion.
- The larger the neutron fluence, the greater the expansion.
5. Tests on Concrete

Specification on Concrete Specimens

- Specimen Size: Φ40mm × 60mm
- Neutron Fluence (E>0.1Mev): 3 Levels 0.778, 1.41, 4.58 (×10^{19} n/cm^{2})
- Quartz Content: 2 Levels

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Coarse Aggregate</th>
<th>Quartz Content (%)</th>
<th>Size (mm)</th>
<th>Water-Cement Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con-A</td>
<td>GA</td>
<td>91.9</td>
<td>5 - 13</td>
<td>0.50</td>
</tr>
<tr>
<td>Con-B</td>
<td>GB</td>
<td>47.1</td>
<td>5 - 13</td>
<td>0.50</td>
</tr>
</tbody>
</table>

- Cement: High-Early-Strength Portland Cement
- Fine Aggregate: Pit Sand (SiO_{2} \simeq 76%)

Relationship Between Neutron Fluence and Expansion

- The larger the α-quartz content of aggregate in concrete, the greater the expansion.
- The amount of height expansion of concrete is less than that of aggregate.
Compressive strength of concrete decreased linearly with neutron fluence.

The larger the α-quartz content is, the more rapid the decrease in concrete strength is.

6. Discussion

Result of X-Ray Diffraction in Coarse Aggregate

- Peak position angles shifted to the low angle. → Increase in the spacing of lattice planes ⇒ Expansion
- Peaks of α-quartz decrease due to increase in neutron fluence.
- X-ray diffraction pattern of α-quartz became not being observed. ⇒ Change of the crystal structure
There is almost no change in the peaks on cement paste due to the increase in neutron fluence.
⇒ Cement paste has high resistance to neutron fluence.

The effect of heat on concrete is not as large as the effect of neutron irradiation.
⇒ The reduction in compressive strength is dominated by neutron irradiation.

7. Conclusion
The Effects of Concrete by Neutron Irradiation

- Concrete expands by neutron irradiation.
 → The larger the α-quartz content in the coarse aggregate, the greater the expansion of concrete.
- Compressive strength of concrete is decreased by neutron irradiation.
 → The larger the α-quartz content in the coarse aggregate is, the more rapid the decrease in concrete strength is.

Mechanism: increase in the spacing of lattice planes and disappearance of X-ray diffraction pattern on α-quartz in the coarse aggregate of concrete by neutron irradiation.

Thank you very much.