Molten Salt Reactor Technology Working Group (MSR TWG)

Joe Kowalczyk
Nuclear Research Engineer, Southern Company

Molten salt reactors represent the future of nuclear energy on the basis of being clean, safe and cost-effective means of meeting increased energy demands on a sustainable basis.

The six member companies of the MSR TWG collaborate to influence policy makers and work on common R&D scope.

Active projects include:
- Engagement with international partners through Nuclear Energy Agency (NEA)
- The International Experimental Thermal-Hydraulic Systems Database (TIETHYS)
- Participation in NEAMS Executive Advanced Reactor Industry Council (NEARIC)
- Review of consensus standards and guidelines related to MSR licensing
International Collaboration with the Nuclear Energy Agency

The NEA: A Forum for Co-operation for the Most Advanced Countries in the World

- Founded in 1958
- 31 member countries
- 7 standing technical committees
- 75 working parties and expert groups
- 21 international joint projects

Slide Courtesy of Dr. Upendra Singh Pehalvi
Brookhaven National Laboratory
Framework for International Thermal Hydraulic Databases for Validation (TIETHYS)

Objective
- Create dynamic expandable relational database for retrieval of thermal/hydraulic data (SET and IET) for code validation for different reactor types and different M&S tools (system codes and CFD)
- Mechanism to obtain and preserve data from US and International sources
- Qualify existing database with additional information-measurement uncertainty, scaling, etc. for modern validation and uncertainty evaluation.
- Set up guidelines for documentation for future tests

Challenge
- Data distributed across multiple sources, at different scales and in varying formats
- Availability and quality of data and documentation varies greatly

MSR Information
- Thermo-physical properties of fluoride/ chloride solutions; Heat capacity, Melting points, Equilibrium data, Heat of transition, Enthalpies, Vapor pressure, Viscosity, Density, Thermal conductivity
- Analytical Tools-codes, i.e. TRACE-PARC, NETFLOW++, etc
- Licensing
 - Safety parameters
 - Accident Scenarios, Reactivity Insertion, Loss of Flow, LOCA, etc. and corresponding PIRT
- Data (SET and IET)
 - Loop data-forced flow and natural circulation
 - Drain Tank Cooling

Engagement with NEAMS
MSR Consensus Standards Review

ANS 6.4 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants

- MSR would utilize an update to this standard
- New temperature requirements, different spectrum
- Changes calculation of both dose and concrete thickness
- Referenced by RG 1.69
ANS 15 Series Standards for the Operation of Research Reactors

- Need to be re-examined for applicability to MSRs
- Referenced by NUREG-1537

Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors

ANS 15 Series Standards for the Operation of Research Reactors

- 15.1: The Development of Technical Specifications for Research Reactors
- 15.4: Selection and Training of Personnel for Research Reactors
- 15.7: Research Reactor Site Evaluation
- 15.8: Quality Assurance Program Requirements for Research Reactors
- 15.10: Decommissioning of Research Reactors
- 15.11: Radiation Protection at Research Reactor Facilities
- 15.12: Design Objectives for and Monitoring of Systems Controlling Research Reactor Effluents
- 15.15: Criteria for the Reactor Safety Systems of Research Reactors
- 15.16: Emergency Planning for Research Reactors
- 15.19: Shipment and Receipt of Special Nuclear Material (SNM) by Research Reactor Facilities
- 15.20: Criteria for the Reactor Control and Safety Systems of Research Reactors
- 15.21: Format and Content for Safety Analysis Reports for Research Reactors

ANS 20.2 Nuclear Safety Design Criteria and Functional Performance Requirements for Liquid-Fuel Molten-Salt Reactor Nuclear Power Plants

- Request that NRC endorse this standard
- Alternative to Appendix A of 10 CFR Part 50
- Equivalent of standards referenced in DG-1330 for HTGRs and SFRs
What is it going to take to move forward?

• People, not organizations or initiatives, get things done.
• Nothing worthwhile can be accomplished without extended effort and force of will.
• The men who built MSRE recognized the value of hard work, attention to detail, personal responsibility, and determination.
• There is no backup plan. Find a way to get it done.