Decommissioning of Fukushima-Daiichi NPP
Waste and Water
Long-term Decommissioning Plan

RIC 2022, March. 9, 2022

Hajimu Yamana
President, Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF)
Professor Emeritus, Kyoto University
Organization and responsibility

Ministries engaged in water discharge issue
- Curbing reputational damage
- Ocean monitoring
- Information dissemination

NDF
as the government affiliated organization entrusted with the post-accident handling
- D&D strategy formulation
- D&D fund management
- Program and project oversight
- Instruction to TEPCO-FDEC
- R&D planning and management

The Nuclear Emergency Response Headquarters

Inter-ministerial Council

METI

NRA

TEPCO-FDEC
as the operator with the ultimate liability to the accident response
- D&D delivery
- D&D action plan
- D&D Project management
- Water discharge operation

IAEA Review for water management

Private Sectors/ JAEA/Universities

Technical support via. R&D
Technical support by Analysis of water/waste and debris
Progress and future decommissioning plan

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Early period</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3-(1)</th>
<th>Phase 3-(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent fuel removal</td>
<td>• Cold shutdown</td>
<td>• Spent fuel removal started in 2013 for the first implementing unit</td>
<td>• Small-scaled fuel debris retrieval is to start within 2022 for the first implementing unit</td>
<td>• From the end of Phase 2 through the end of decommissioning (Target period will be 30 to 40 years after Step 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Significantly reducing the release of radioactive materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold shutdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spent fuels in Pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Containment Vessel (PCV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fueld-debris in RPV&PCV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression Chamber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated cooling water generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Pressure Vessel (RPV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppression Chamber water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accumulated solid waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fulfilment

- Spent fuel removal from Units 1 to 6 completed
- Trial retrieval of fuel debris gets started
- Gradual expansion of fuel debris retrieval
- Minimize contaminated water generation
- Proceed with waste storage

Remote arm to be adopted to unit-2
Water management in Fukushima Daiichi

- **In-flow of Groundwater (150m³/d)**
- **Reactor Building**
 - PCV
 - RPV
- **SF Pool**
- **Advanced Liquid Processing System (ALPS)**
 - Cs, Sr, other radio-nuclides
 - Removal of all radio-nuclides except for \(^{3}H\)
- **Cooling water**
- **Desalination by RO**
- **Storage Tank**
 - 1.4 Mm³, currently stored
- **Cs Removal by zeolite**
 - Sr and others

© Nuclear Damage Compensation and Decommissioning Facilitation Corporation
Water discharge plan

Status* of ALPS treated water etc.

- Volume of storage : 1,270,000 m³
- Increase rate : 50,000 m³ per year
- Tritium inventory : 780 TBq
- Tritium average conc. : 60,000 Bq/L

* As of December 2021

Plan of the ocean discharge

- Dilution rate : > 100
- Tritium amount : < 22 TBq per year
- Tritium conc. : < 1,500 Bq/L
- Conc. of other nuclides : < 0.01 of standard**

** Design and operations for ALPS treated water discharge**

Annual amount of discharge of tritium water

<table>
<thead>
<tr>
<th>Nuclear facility</th>
<th>Annual approx. discharge (TBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fukushima Daiichi (6 units)</td>
<td>< 22</td>
</tr>
<tr>
<td>BWRs in the world</td>
<td>0.3 - 4</td>
</tr>
<tr>
<td>PWRs in the world</td>
<td>20 - 110</td>
</tr>
<tr>
<td>CANDUs in the world</td>
<td>30 - 800</td>
</tr>
<tr>
<td>Reprocessing facilities in Europe</td>
<td>400 – 11,000</td>
</tr>
</tbody>
</table>

Facility for the ocean discharge

- Discharge method : Undersea tunnel
- Length of tunnel : approx. 1km
- Depth of discharge point : approx. 10m

Sum of ratios of each radionuclide concentration to the regulatory standard in ALPS treated water is reduced less than 1 and the diluted more than 100 times.
Continued challenges

Status

- Collaborative structure composed of multiple organizations is addressing the Fukushima Daiichi Decommissioning under the strong leadership by the government.
- TEPCO has been reinforcing its project management structure.
- Major progress:
 - 1F-site has been safely controlled under drastically improved radiation environment
 - Spent fuels removal from damaged units has been steadily progressing
 - Inside inspection of damaged units with small-scaled fuel-debris sampling will start soon
- Engineering works have been geared up for the full-fledged fuel-debris retrieval expected to start from around 2030.
- A prospect for the safety of the solid waste disposal has been confirmed by NDF.

Challenges

- Ocean discharge of the treated water:
 - Urgency of the discharge due to the limitation of the water storage capacity
 - Obtaining understanding of public and the world
 - Quality, credibility, and transparency of the analysis of the discharged water
 - Implementation of the socio-economic measures to curb the reputational damage
- Fuel-debris retrieval will embark on the stage of full-scale engineering.